A Robust Fault Diagnosis Scheme for Converter in Wind Turbine Systems

Author:

Liang Jinping1,Zhang Ke1

Affiliation:

1. School of Astronautics, Northwestern Polytechnical University, Xi’an 710072, China

Abstract

Fault diagnosis is a powerful tool to reduce downtime and improve maintenance efficiency; thus, the low management cost of wind turbine systems and effective utilization of wind energy can be obtained. However, the accuracy of fault diagnosis is extremely susceptible to the nonlinearity and noise in the measured signals and the varying operating conditions. This paper proposes a robust fault diagnosis scheme based on ensemble empirical mode decomposition (EEMD), intrinsic mode function (IMF), and permutation entropy (PE) to diagnose faults in the converter in wind turbine systems. Three-phase voltage signals output by the converter are used as the input of the fault diagnosis model and each signal is decomposed into a set of IMFs by EEMD. Then, the PE is calculated to estimate the complexity of the IMFs. Finally, the IMF-PE information is taken as the feature of the classifier. The EEMD addresses nonlinear signal processing and mitigates the effects of mode mixing and noise. The PE increases the robustness against variations in the operating conditions and signal noise. The effectiveness and reliability of the method are verified by simulation. The results show that the accuracy for 22 faults reaches about 98.30% with a standard deviation of approximately 2% under different wind speeds. In addition, the average accuracy of 30 runs for different noises is higher than approximately 76%, and the precision, recall, specificity, and F1-Score all exceed 88% at 10 dB. The standard deviation of all the evaluation indicators is lower than about 1.7%; this proves the stable diagnostic performance. The comparison with different methods demonstrates that this method has outstanding performance in terms of its high accuracy, strong robustness, and computational efficiency.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3