Improving Code Completion by Solving Data Inconsistencies in the Source Code with a Hierarchical Language Model

Author:

Yang Yixiao1ORCID

Affiliation:

1. College of Information Engineering, Capital Normal University, Beijing 100048, China

Abstract

In the field of software engineering, applying language models to the token sequence of source code is the state-of-the-art approach to building a code recommendation system. When applying language models to source code, it is difficult for state-of-the-art language models to deal with the data inconsistency problem, which is caused by the free naming conventions of source code. It is common for user-defined variables or methods with similar semantics in source code, to have different names in different projects. This means that a model trained on one project may encounter many words the model has never seen before during another project. Those freely named variables or functions in the code will bring difficulties to the processes of training and prediction and cause a data inconsistency problem between projects. However, we discover that the syntax tree of source code has hierarchical structures. This code structure has strong regularity in different projects and can be used to combat data inconsistency. In this paper, we propose a novel Hierarchical Language Model (HLM) to improve the robustness of the state-of-the-art recurrent language model, in order to be able to deal with data inconsistency between training and testing. The newly proposed HLM takes the hierarchical structure of the code tree into consideration to predict code. The proposed HLM method generates the embedding for each sub-tree according to hierarchies and collects the embedding of each sub-tree in context, to predict the next piece of code. The experiments on inner-project and cross-project datasets indicate that the newly proposed HLM method performs better than the state-of-the-art recurrent language model in dealing with the data inconsistency between training and testing, and achieves an average improvement in prediction accuracy of 11.2%.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3