Channel Estimation for High-Speed Railway Wireless Communications: A Generative Adversarial Network Approach

Author:

Zhang Qingmiao1ORCID,Dong Hanzhi1,Zhao Junhui12ORCID

Affiliation:

1. School of Information Engineering, East China Jiaotong University, Nanchang 330013, China

2. School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, China

Abstract

In high-speed railways, the wireless channel and network topology change rapidly due to the high-speed movement of trains and the constant change of the location of communication equipment. The topology is affected by channel noise, making accurate channel estimation more difficult. Therefore, the way to obtain accurate channel state information (CSI) is the greatest challenge. In this paper, a two-stage channel-estimation method based on generative adversarial networks (cGAN) is proposed for MIMO-OFDM systems in high-mobility scenarios. The complex channel matrix is treated as an image, and the cGAN is trained against it to generate a more realistic channel image. In addition, the noise2noise (N2N) algorithm is used to denoise the pilot signal received by the base station to improve the estimation quality. Simulation experiments have shown the proposed N2N-cGAN algorithm has better robustness. In particular, the N2N-cGAN algorithm can be adapted to the case of fewer pilot sequences.

Funder

National Natural Science Foundation of China

Beijing Natural Science Foundation

National Key Research and Development Project

Key project of Natural Science Foundation of Jiangxi Province

Key Laboratory of Universal Wireless Communications (BUPT), Ministry of Education, P.R.China

Jiangxi Key Laboratory of Artificial Intelligence Transportation Information Transmission and Processing

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3