Dynamic Optimal Power Flow of Active Distribution Network Based on LSOCR and Its Application Scenarios

Author:

Meng Weiqi1ORCID,Song Dongran1ORCID,Deng Xiaofei2,Dong Mi1,Yang Jian1,Rizk-Allah Rizk M.34ORCID,Snášel Václav4ORCID

Affiliation:

1. School of Automation, Central South University, Changsha 410083, China

2. School of Information Technology and Management, Hunan University of Finance and Economics, Changsha 410205, China

3. Department of Basic Engineering Science, Faculty of Engineering, Menoufia University, Shebin El-Kom 32511, Egypt

4. Faculty of Electrical Engineering and Computer Science, VŠB-Technical University of Ostrava, 70800 Ostrava, Czech Republic

Abstract

Optimal power flow (OPF) is a crucial aspect of distribution network planning and operation. Conventional heuristic algorithms fail to meet the system requirements for speed and accuracy, while linearized OPF approaches are inadequate for distribution networks with high R/X ratios. To address these issues and cater to multi-period scenarios, this study proposes a dynamic linearized second-order cone programming-based (SOCP) OPF model. The model is built by first establishing a dynamic OPF model based on linearized second-order conic relaxation (LSOCR-DOPF). The components of the active distribution network, such as renewable energy power generation units, energy storage units, on-load-tap-changers, static var compensators, and capacitor banks, are then separately modeled. The model is implemented in MATLAB and solved by YALMIP and GUROBI. Finally, three representative scenarios are used to evaluate the model accuracy and effectiveness. The results show that the proposed LSOCR-DOPF model can ensure calculation time within 3 min, voltage stability, and error control within 10−6 for all three applications. This method has strong practical value in the fields of active distribution network day-ahead dispatch, accurate modeling of ZIP load, and real-time operation.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province

Innovation-Driven Project of Central South University

internal grant project of VSB-Technical University of Ostrava

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3