Chiplet Multi-Objective Optimization Algorithm Based on Communication Consumption and Temperature

Author:

Sun Haiyan12,Peng Xinwei1,Cang Dongqing1,Zhao Jicong12,Liu Yanhua12,Fang Jiaen3

Affiliation:

1. School of Information Science and Technology, Nantong University, Nantong 226019, China

2. Jiangsu Key Laboratories of ASIC Design, Nantong University, Nantong 226019, China

3. Suzhou Rigger Micro Technologies Group Co., Ltd., Suzhou 215011, China

Abstract

A chiplet multi-objective optimization algorithm for 2.5-D integrated circuit (IC) based on a passive interposer is discussed in this article. Inspired by the network-on-chip mapping problem, we propose a novel algorithm, called chiplet multi-objective optimization, which minimizes the average temperature and the communication consumption between chiplets at the same time. The algorithm considers the specificities of 2.5-D IC chiplets, such as the spacing and different sizes of chiplets. In addition to the weight factor, α is also introduced to make a balance between temperature and the communication consumption. The designer can change the weight factor according to their own requirement. The multi-window display system is used as an example in this article to demonstrate the algorithm’s efficiency and the accuracy. According to our algorithm, the system temperature of the most ideal solution can be reduced by 8.34 K and the communication consumption reduced by 232.13 μJ.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimizing Heat Source Arrangement for 3D ICs with irregular structures using machine learning methods;2023 24th International Conference on Electronic Packaging Technology (ICEPT);2023-08-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3