A High-Performance FPGA-Based Depthwise Separable Convolution Accelerator

Author:

Huang Jiye12ORCID,Liu Xin12ORCID,Guo Tongdong1ORCID,Zhao Zhijin3ORCID

Affiliation:

1. The School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China

2. Zhejiang Provincial Key Lab of Equipment Electronics, Hangzhou 310018, China

3. The School of Communication Engineering, Hangzhou Dianzi University, Hangzhou 310018, China

Abstract

Depthwise separable convolution (DSC) significantly reduces parameter and floating operations with an acceptable loss of accuracy and has been widely used in various lightweight convolutional neural network (CNN) models. In practical applications, however, DSC accelerators based on graphics processing units (GPUs) cannot fully exploit the performance of DSC and are unsuitable for mobile application scenarios. Moreover, low resource utilization due to idle engines is a common problem in DSC accelerator design. In this paper, a high-performance DSC hardware accelerator based on field-programmable gate arrays (FPGAs) is proposed. A highly reusable and scalable multiplication and accumulation engine is proposed to improve the utilization of computational resources. An efficient convolution algorithm is proposed for depthwise convolution (DWC) and pointwise convolution (PWC), respectively, to reduce the on-chip memory occupancy. Meanwhile, the proposed convolution algorithms achieve partial fusion between PWC and DWC, and improve the off-chip memory access efficiency. To maximise bandwidth utilization and reduce latency when reading feature maps, an address mapping method for off-chip accesses is proposed. The performance of the proposed accelerator is demonstrated by implementing MobileNetV2 on an Intel Arria 10 GX660 FPGA by using Verilog HDL. The experimental results show that the proposed DSC accelerator achieves a performance of 205.1 FPS, 128.8 GFLOPS, and 0.24 GOPS/DSP for input images of size 224×224×3.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hardware Parallel Structure for Convolution Computing in Image Processing;2024 47th International Conference on Telecommunications and Signal Processing (TSP);2024-07-10

2. Efficient Two-Stage Max-Pooling Engines for an FPGA-Based Convolutional Neural Network;Electronics;2023-09-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3