Addressing Long-Distance Dependencies in AMR Parsing with Hierarchical Clause Annotation

Author:

Fan Yunlong12ORCID,Li Bin12ORCID,Sataer Yikemaiti12,Gao Miao12,Shi Chuanqi12,Gao Zhiqiang12

Affiliation:

1. School of Computer Science and Engineering, Southeast University, Nanjing 211189, China

2. Key Laboratory of Computer Network and Information Integration, Ministry of Education, Southeast University, Nanjing 211189, China

Abstract

Most natural language processing (NLP) tasks operationalize an input sentence as a sequence with token-level embeddings and features, despite its clausal structure. Taking abstract meaning representation (AMR) parsing as an example, recent parsers are empowered by transformers and pre-trained language models, but long-distance dependencies (LDDs) introduced by long sequences are still open problems. We argue that LDDs are not actually to blame for the sequence length but are essentially related to the internal clause hierarchy. Typically, non-verb words in a clause cannot depend on words outside of it, and verbs from different but related clauses have much longer dependencies than those in the same clause. With this intuition, we introduce a type of clausal feature, hierarchical clause annotation (HCA), into AMR parsing and propose two HCA-based approaches, HCA-based self-attention (HCA-SA) and HCA-based curriculum learning (HCA-CL), to integrate HCA trees of complex sentences for addressing LDDs. We conduct extensive experiments on two in-distribution (ID) AMR datasets (AMR 2.0 and AMR 3.0) and three out-of-distribution (OOD) ones (TLP, New3, and Bio). Experimental results show that our HCA-based approaches achieve significant and explainable improvements (0.7 Smatch score in both ID datasets; 2.3, 0.7, and 2.6 in three OOD datasets, respectively) against the baseline model and outperform the state-of-the-art (SOTA) model (0.7 Smatch score in the OOD dataset, Bio) when encountering sentences with complex clausal structures that introduce most LDD cases.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3