A Multi-Antenna Spectrum Sensing Method Based on CEEMDAN Decomposition Combined with Wavelet Packet Analysis

Author:

Li Suoping1ORCID,Han Yuzhou1,Gaber Jaafar2ORCID,Yang Sa1,Yang Qian1

Affiliation:

1. School of Electrical & Information Engineering, Lanzhou University of Technology, Lanzhou 730050, China

2. Department of Computer Science and Computer Engineering, Universite de Technologie Belfort-Montbeliard, 90010 Belfort, France

Abstract

In many practical communication environments, the presence of uncertain and hard-to-estimate noise poses significant challenges to cognitive radio spectrum sensing systems, especially when the noise distribution deviates from the Gaussian distribution. This paper introduces a cutting-edge multi-antenna spectrum sensing methodology that synergistically integrates complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), wavelet packet analysis, and differential entropy. Signal feature extraction commences by employing CEEMDAN decomposition and wavelet packet analysis to denoise signals collected by secondary antenna users. Subsequently, the differential entropy of the preprocessed signal observations serves as the feature vector for spectrum sensing. The spectrum sensing module utilizes the SVM classification algorithm for training, while incorporating elite opposition-based learning and the sparrow search algorithm with genetic variation to determine optimal kernel function parameters. Following successful training, a decision function is derived, which can obviate the need for threshold derivation present in conventional spectrum sensing methods. Experimental validation of the proposed methodology is conducted and comprehensively analyzed, conclusively demonstrating its remarkable efficacy in enhancing spectrum sensing performance.

Funder

National Natural Science Foundation of China

Hongliu First Class Discipline Development Project of Lanzhou University of Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3