Anomaly Detection Methods for Industrial Applications: A Comparative Study

Author:

Panza Maria Antonietta1ORCID,Pota Marco1ORCID,Esposito Massimo1ORCID

Affiliation:

1. National Research Council of Italy (CNR), Institute for High Performance Computing and Networking (ICAR), Via P. Castellino 111, 80131 Naples, Italy

Abstract

Anomaly detection (AD) algorithms can be instrumental in industrial scenarios to enhance the detection of potentially serious problems at a very early stage. Of course, the “Industry 4.0” revolution is fostering the implementation of intelligent data-driven decisions in industry based on increasingly efficient machine learning (ML) algorithms. Most well-known AD methods use a supervised learning approach focusing on fault classification. They assume the availability of labeled data for both normal and anomalous classes. However, in many industrial environments, a labeled set of anomalous data instances is more challenging to obtain than a labeled set of normal data. Hence, this work implements an unsupervised approach based on two different methods using a typical benchmark bearing-fault dataset. The first method relies on the manual extraction of typical vibration metrics provided as input to an ML algorithm. The second one is based on a deep learning (DL) approach, automatically learning latent representation from raw data. The performance metrics demonstrate that both approaches can distinguish the state of a bearing from normal to faulty. DL methodology proves a higher accuracy rate in recognizing faults and a better ability to provide information about the fault size.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3