Raptor-like Coded Broadcasting for Efficient V2X Communications

Author:

Jin Zuolin1,Li Huan1ORCID,Huang Jingxuan1ORCID,Wang Xinyi1ORCID,Tan Zhiyuan2,Dong Pengpeng2,Fei Zesong1

Affiliation:

1. School of Information and Electronics, Beijing Institute of Technology (BIT), Beijing 100081, China

2. Huawei Technologies Co., Ltd., Shanghai 201206, China

Abstract

Broadcasting is a critical feature in V2X communication, allowing for the simultaneous dissemination of safety-critical messages to all nearby vehicles. However, the requirement for low latency in information dissemination and the need for reliable and efficient data transmission pose significant challenges to broadcasting in V2X communication systems. In this paper, we present a novel raptor-like coded broadcasting (RLCB) scheme for low-latency V2X communications. Firstly, we introduce feedback into a concatenated fountain code, and adjust its precoding and coding structure to achieve effective data deliverance under a limited number of retransmissions for low-latency transmission. Then, based on the raptor-like encoding and decoding structure, we propose a mutual exclusion-based network encoding (MENC) algorithm to enable retransmission in broadcasting scenarios. We also conduct a complexity analysis on the encoding and decoding process of our proposed scheme. Numerical results demonstrate the superior performance of our proposed scheme in reducing the packet error rate (PER) and improving spectral efficiency compared to the R10 code and hybrid automatic repeat request (HARQ) scheme.

Funder

National Natural Science Foundation of China

Natural Science Foundation on Frontier Leading Technology Basic Research Project of Jiangsu

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3