Research on Tuning Control Technology for Wireless Power Transfer Systems for Concrete Embedded Sensors

Author:

Rong Cancan1,Wu Zhousen1,Yan Lihui1,Chen Mengmeng1,Yan Jiaan1,Ren Gang1,Xia Chenyang1

Affiliation:

1. Jiangsu Province Laboratory of Mining Electric and Automation, China University of Mining and Technology, Xuzhou 221008, China

Abstract

Concrete embedded sensors play a very important role in structural health monitoring. However, the time of endurance of sensors remains a performance bottleneck and sensors need to be charged without damaging the structure as well. Wireless power transfer (WPT) technology is a promising approach to solving this problem. However, the electromagnetic characteristics of concrete medium can cause WPT systems to be untuned and can reduce the energy transmission efficiency of the system. In this paper, the induced medium loss and eddy current loss of a WPT system in concrete are calculated using analytical equations and finite element analysis method. The equivalent circuit model of a concrete–air transmedia WPT system is established according to the calculated losses and a composite tuning control technology is proposed based on the above analysis. In addition, the composite tuning control technology combines the advantages of frequency-modulation tuning and dynamic compensation tuning to ensure the overall resonance of the WPT system. The tuning control technology can ensure the whole resonance of the WPT system and make the natural resonant frequencies of primary and secondary sides consistent. The experimental results show that compared with the untuned control technology, the output power and efficiency of the tuned control system increased by 73% and 11.05%, respectively. The proposed tuning control technology provides direction for future charging of concrete-embedded sensors.

Funder

State Key Laboratory of Advanced Electromagnetic Engineering and Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3