Affiliation:
1. College of Telecommunication Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
2. National Astronomical Observatories of Chinese Academy of Sciences, Beijing 100012, China
Abstract
The method of multi-sensor integrated navigation improves navigation accuracy by fusing various sensor data. However, when a sensor is disturbed or malfunctions, incorrect measurement information will seriously affect the estimation of the trajectory, which will lead to a decrease in accuracy. Existing factor graph models based on weights can neither fully resist the influence of disturbances nor guarantee the local rationality of estimated trajectories. In this paper, a factor graph with local constraints model that fuses the magnetic field and pedestrian dead reckoning data is proposed to navigate complex curved trajectories. First, adding local constraints to the pedestrian dead reckoning measurement converts the navigation solution problem into a hard-constrained nonlinear least squares problem. Then, a mapping model is constructed to reconstruct the variable space and the Adam gradient algorithm is used to realize a fast calculation. The navigation accuracy of this algorithm is better than that of the state-of-the-art method in real-world experiments, with an average accuracy of 0.83 m.
Funder
Natural Science Foundation of China
Scientific Research Fund of Zhejiang Provincial Education Department
Zhejiang Province Commonweal Projects
Jiangsu Province Policy Guidance Program International Science and Technology Cooperation Project
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献