Factor Graph with Local Constraints: A Magnetic Field/Pedestrian Dead Reckoning Integrated Navigation Method Based on a Constrained Factor Graph

Author:

Li Zehua1,Shang Junna1,Shi Huli2

Affiliation:

1. College of Telecommunication Engineering, Hangzhou Dianzi University, Hangzhou 310018, China

2. National Astronomical Observatories of Chinese Academy of Sciences, Beijing 100012, China

Abstract

The method of multi-sensor integrated navigation improves navigation accuracy by fusing various sensor data. However, when a sensor is disturbed or malfunctions, incorrect measurement information will seriously affect the estimation of the trajectory, which will lead to a decrease in accuracy. Existing factor graph models based on weights can neither fully resist the influence of disturbances nor guarantee the local rationality of estimated trajectories. In this paper, a factor graph with local constraints model that fuses the magnetic field and pedestrian dead reckoning data is proposed to navigate complex curved trajectories. First, adding local constraints to the pedestrian dead reckoning measurement converts the navigation solution problem into a hard-constrained nonlinear least squares problem. Then, a mapping model is constructed to reconstruct the variable space and the Adam gradient algorithm is used to realize a fast calculation. The navigation accuracy of this algorithm is better than that of the state-of-the-art method in real-world experiments, with an average accuracy of 0.83 m.

Funder

Natural Science Foundation of China

Scientific Research Fund of Zhejiang Provincial Education Department

Zhejiang Province Commonweal Projects

Jiangsu Province Policy Guidance Program International Science and Technology Cooperation Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3