Enhancing Ransomware Attack Detection Using Transfer Learning and Deep Learning Ensemble Models on Cloud-Encrypted Data

Author:

Singh Amardeep1,Mushtaq Zohaib2ORCID,Abosaq Hamad Ali3ORCID,Mursal Salim Nasar Faraj4,Irfan Muhammad4ORCID,Nowakowski Grzegorz5ORCID

Affiliation:

1. School of Computer Information Sciences, University of Cumberlands, Williamsburg, KY 40769, USA

2. Department of Electrical Engineering, College of Engineering and Technology, University of Sargodha, Sargodha 40100, Pakistan

3. Computer Science Department, College of Computer Science and Information Systems, Najran University, Najran 61441, Saudi Arabia

4. Electrical Engineering Department, College of Engineering, Najran University, Najran 61441, Saudi Arabia

5. Faculty of Electrical and Computer Engineering, Cracow University of Technology, Warszawska 24 Str., 31-155 Cracow, Poland

Abstract

Ransomware attacks on cloud-encrypted data pose a significant risk to the security and privacy of cloud-based businesses and their consumers. We present RANSOMNET+, a state-of-the-art hybrid model that combines Convolutional Neural Networks (CNNs) with pre-trained transformers, to efficiently take on the challenging issue of ransomware attack classification. RANSOMNET+ excels over other models because it combines the greatest features of both architectures, allowing it to capture hierarchical features and local patterns. Our findings demonstrate the exceptional capabilities of RANSOMNET+. The model had a fantastic precision of 99.5%, recall of 98.5%, and F1 score of 97.64%, and attained a training accuracy of 99.6% and a testing accuracy of 99.1%. The loss values for RANSOMNET+ were impressively low, ranging from 0.0003 to 0.0035 throughout training and testing. We tested our model against the industry standard, ResNet 50, as well as the state-of-the-art, VGG 16. RANSOMNET+ excelled over the other two models in terms of F1 score, accuracy, precision, and recall. The algorithm’s decision-making process was also illuminated by RANSOMNET+’s interpretability analysis and graphical representations. The model’s openness and usefulness were improved by the incorporation of feature distributions, outlier detection, and feature importance analysis. Finally, RANSOMNET+ is a huge improvement in cloud safety and ransomware research. As a result of its unrivaled accuracy and resilience, it provides a formidable line of defense against ransomware attacks on cloud-encrypted data, keeping sensitive information secure and ensuring the reliability of cloud-stored data. Cybersecurity professionals and cloud service providers now have a reliable tool to combat ransomware threats thanks to this research.

Funder

Faculty of Electrical and Computer Engineering, Cracow University of Technology and the Ministry of Science and Higher Education, Republic of Poland

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing Network Intrusion Detection Using Effective Stacking of Ensemble Classifiers With Multi-Pronged Feature Selection Technique;2023 2nd International Conference on Emerging Trends in Electrical, Control, and Telecommunication Engineering (ETECTE);2023-11-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3