Multi-Phase Focused PID Adaptive Tuning with Reinforcement Learning

Author:

Ding Ye1ORCID,Ren Xiaoguang1,Zhang Xiaochuan1,Liu Xin1,Wang Xu1

Affiliation:

1. Intelligent Game and Decision Lab (IGDL), Beijing 100094, China

Abstract

The Proportional-Integral-Derivative (PID) controller, a fundamental element in industrial control systems, plays a pivotal role in regulating an extensive array of controlled objects. Accurate and rapid adaptive tuning of PID controllers holds significant practical value in fields such as mechatronics, robotics, and automatic control. The three parameters of the PID controller exert a substantial influence on control performance, rendering the tuning of these parameters an area of significant interest within related research fields. Numerous tuning techniques are widely employed to optimize its functionality. Nonetheless, their adaptability and control stability may be constrained in situations where prior knowledge is inadequate. In this paper, a multi-phase focused PID adaptive tuning method is introduced, leveraging the deep deterministic policy gradient (DDPG) algorithm to automatically establish reference values for PID tuning. This method constrains agent actions in multiple phases based on the reward thresholds, allowing the output PID parameters to focus within the stable region, which provides enhanced adaptability and maintains the stability of the PID controller even with limited prior knowledge. To counteract the potential issue of a vanishing gradient following action constraints, a residual structure is incorporated into the actor network. The results of experiments conducted on both first-order and second-order systems demonstrate that the proposed method can reduce the tracking error of a PID controller by 16–30% compared with the baseline methods without a loss in stability.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3