Service Function Chaining to Support Ultra-Low Latency Communication in NFV

Author:

Erbati Mohammad Mohammadi1,Tajiki Mohammad Mahdi2ORCID,Schiele Gregor3ORCID

Affiliation:

1. Fixed Line Device Engineering, Deutsche Telekom Technik GmbH, 64295 Darmstadt, Germany

2. The School of Electronic Engineering and Computer Science, Queen Mary University of London, London EC1M 6BQ, UK

3. Embedded Systems Department, University of Duisburg-Essen, 47057 Duisburg, Germany

Abstract

Network function virtualization (NFV) has the potential to fundamentally transform conventional network architecture through the decoupling of software from dedicated hardware. The convergence of virtualization and cloud computing technologies has revolutionized the networking landscape, offering a wide range of advantages, including improved flexibility, manageability, and scalability. The importance of network capability in enabling ultra-low latency applications has been greatly amplified in the current era due to the increased demand for emerging services such as autonomous driving, teleoperated driving, virtual reality, and remote surgery. This paper presents a novel and efficient methodology for service function chaining (SFC) in an NFV-enabled network that aims to minimize latency and optimize the utilization of physical network resources, with a specific focus on ultra-low latency applications. In our proposed methodology, we offer flow prioritization and an adjustable priority coefficient factor (µ) to reserve a portion of physical network resources exclusively for ultra-low latency applications in order to optimize the deployment paths of these applications further. We formulate the SFC deployment problem as an integer linear programming (ILP) optimization model. Furthermore, we propose a set of heuristic algorithms that yield near-optimal solutions with minimal optimality gaps and execution times, making them practical for large-scale network topologies. Performance evaluations demonstrate the effectiveness of our proposed methodology in enabling ultra-low latency applications in an NFV-enabled network. Compared to existing algorithms, our proposed methodology achieves notable enhancements in terms of the end-to-end delay (up to 22 percent), bandwidth utilization (up to 28 percent), and SFC acceptance rate (up to 13 percent).

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3