A Novel Complex-Valued Blind Source Separation and Its Applications in Integrated Reception

Author:

Luo Weilin1ORCID,Jin Hongbin1,Li Xiaobai1,Li Hao1,Liu Kang1,Yang Ruijuan1

Affiliation:

1. Department of Intelligence, Air Force Early Warning Academy, Wuhan 430019, China

Abstract

The separation of time–frequency mixing signals composed of radar, communication, and jamming is the first step in integrated reception processing, which requires higher accuracy for complex blind source separation (CVBSS). However, traditional CVBSS methods have limitations such as low separation accuracy, a slow convergence speed, and poor robustness in low signal-to-noise ratio (SNR) and high jamming-to-signal ratio (JSR) scenarios. To address the above issues, this paper firstly establishes a time delay mixing mathematical model. A robust whitening algorithm is proposed by using the time delay correlation matrix of the observed signal, which is insensitive to noise. Secondly, the joint diagonalized F-parametrization is used as the objective function, and the separation matrix is constructed based on the multiple complex-valued Givens matrices. The complex-valued Givens matrix not only ensures orthogonality in the separation matrix but also effectively reduces the number of parameters to be calculated. This approach guarantees accuracy and simplifies the complexity of the separation process. Finally, the nonlinear chaotic grey wolf optimizer is utilized to search for the optimal rotation angle. The simulation results demonstrate that this algorithm offers higher separation accuracy and requires fewer iterations compared to the traditional algorithm. Additionally, it enhances the accuracy of direction of arrival (DOA) estimation, reduces the communication bit error rate, and enables the joint estimation of the target distance and velocity even in the presence of powerful jamming and a low SNR.

Funder

the National Defense Science and Technology Innovation Zone Fund of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3