Mutual Inductance and Load Identification of LCC-S IPT System Considering Equivalent Inductance of Rectifier Load

Author:

Shen Haomin1,Wang Xiaona1,Sun Pan1,Wang Lei1,Liang Yan1

Affiliation:

1. School of Electrical Engineering, Naval University of Engineering, Wuhan 430030, China

Abstract

The variation of mutual inductance and load parameters will affect the transmission power and efficiency of the inductive power transfer (IPT) system. The identification of mutual inductance and load parameters is an essential part of establishing a stable and reliable IPT system. This paper presents a joint identification method of load and mutual inductance for the LCC-S IPT system, which does not require the establishment of primary and secondary communication and related control. Firstly, the resistance-inductance characteristics of the equivalent load of the rectifier are analyzed by simulation, and then the rectifier and system load are equivalent to the circuit model of resistance and inductance in series. Secondly, the characteristics of the reflected impedance are analyzed, and the functional relationship between the transmitter impedance and the rectifier impedance is established by using the ratio of the real part to the imaginary part of the reflected impedance, which realizes the decoupling of the load and the mutual inductance. Thirdly, the functional relationship between the equivalent impedance of the rectifier and the load resistance of the system is obtained by data fitting. Then, the equations of the above two functional relationships are combined. By measuring the voltage of the parallel compensation capacitor at the transmitting side, the current of the transmitting coil and the phase difference between the two, the battery load can be solved first, and then the mutual inductance can be calculated, so that the high-precision identification of the load and mutual inductance can be realized. Finally, an experimental platform of the LCC-S IPT system is built for experimental verification. The experimental results show that the maximum identification errors of mutual inductance and load are 5.20% and 5.53%, respectively, which proves that the proposed identification method can achieve high precision identification.

Funder

National Natural Science Foundation of China

Hubei Province Natural Science Foundation of Innovation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3