Electrical Power Edge-End Interaction Modeling with Time Series Label Noise Learning

Author:

Wang Zhenshang1,Zhou Mi23,Zhao Yuming1,Zhang Fan23,Wang Jing1,Qian Bin23,Liu Zhen3,Ma Peitian3,Ma Qianli3ORCID

Affiliation:

1. Shenzhen Power Supply Bureau Co., Ltd., Shenzhen 518028, China

2. Electric Power Research Institute, China Southern Power Grid, Guangzhou 510663, China

3. Guangdong Provincial Key Laboratory of Intelligent Measurement and Advanced Metering of Power Grid, Guangzhou 510663, China

Abstract

In the context of electrical power systems, modeling the edge-end interaction involves understanding the dynamic relationship between different components and endpoints of the system. However, the time series of electrical power obtained by user terminals often suffer from low-quality issues such as missing values, numerical anomalies, and noisy labels. These issues can easily reduce the robustness of data mining results for edge-end interaction models. Therefore, this paper proposes a time–frequency noisy label classification (TF-NLC) model, which improves the robustness of edge-end interaction models in dealing with low-quality issues. Specifically, we employ two deep neural networks that are trained concurrently, utilizing both the time and frequency domains. The two networks mutually guide each other’s classification training by selecting clean labels from batches within small loss data. To further improve the robustness of the classification of time and frequency domain feature representations, we introduce a time–frequency domain consistency contrastive learning module. By classifying the selection of clean labels based on time–frequency representations for mutually guided training, TF-NLC can effectively mitigate the negative impact of noisy labels on model training. Extensive experiments on eight electrical power and ten other different realistic scenario time series datasets show that our proposed TF-NLC achieves advanced classification performance under different noisy label scenarios. Also, the ablation and visualization experiments further demonstrate the robustness of our proposed method.

Funder

China Southern Power Grid

Research and Development of Multi-type User Plug and Play Intelligent Interactive Terminal

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3