Identification and Analysis of Low-Frequency Oscillation in a Multi-Grid-Forming-VSC Grid-Connected System

Author:

Zhang Min1,Fan Rui1,Li Huipeng1,Zhao Jun1,Wang Tengxin1ORCID,Chen Lin2

Affiliation:

1. State Grid Shanxi Electric Power Company Electric Power Research Institute, Taiyuan 030001, China

2. School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China

Abstract

The existing low-frequency oscillation analysis method of a multi-grid-forming-VSC (voltage source converter) is greatly affected by modeling accuracy, and its oscillation mode can only be determined by acquiring the control parameters of the system. Therefore, a method of identifying low-frequency oscillation characteristics of multi-VSC based on VMD (variational mode decomposition) and a Prony algorithm was proposed in this paper. The Prony algorithm is sensitive to noise, and its identification accuracy is greatly affected by noise. Thus, the VMD algorithm was utilized to denoise the measured data. Then, the Prony algorithm was applied to analyze the low-frequency oscillation of the measured data of single VSC and multi-VSC grid-connected systems, and its applicability to different grid-forming VSCs was verified. The error comparison results showed that the proposed low-frequency oscillation identification method had high accuracy. Furthermore, the influence of the number of parallel VSCs, grid strength and active output on the low-frequency oscillation of the system was investigated. Finally, the effectiveness of the proposed low-frequency oscillation method was verified by building a physical experimental platform.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3