Hyperspectral Image Classification Based on Transposed Convolutional Neural Network Transformer

Author:

Liu Baisen123,Jia Zongting1,Guo Penggang1,Kong Weili1

Affiliation:

1. School of Measurement and Communication Engineering, Harbin University of Science and Technology, Harbin 150080, China

2. College of Electrical and Information Engineering, Heilongjiang Institute of Technology, Harbin 150001, China

3. College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China

Abstract

Hyperspectral imaging is a technique that captures images of objects within a wide spectrum range, allowing for the acquisition of additional spectral information to reveal subtle variations and compositional components in the objects. Convolutional neural networks (CNNs) have shown remarkable feature extraction capabilities for HSI classification, but their ability to capture deep semantic features is limited. On the other hand, transformer models based on attention mechanisms excel at handling sequential data and have demonstrated great potential in various applications. Motivated by these two facts, this paper proposes a multiscale spectral–spatial transposed transformer (MSSTT) that captures the high-level semantic features of an HSI while preserving the spectral information as much as possible. The MSSTT consists of a spectral–spatial Inception module that extracts spectral and spatial features using multiscale convolutional kernels, and a spatial transpose Inception module that further enhances and extracts spatial information. A transformer model with a cosine attention mechanism is also included to extract deep semantic features, with the QKV matrix constrained to ensure the output remains within the activation range. Finally, the classification results are obtained by applying a linear layer to the learnable tokens. The experimental results from three public datasets show that the proposed MSSTT outperforms other deep learning methods in HSI classification. On the India Pines, Pavia University, and Salinas datasets, accuracies of 97.19%, 99.47%, and 99.90% were achieved, respectively, with a training set proportion of 5%.

Funder

Natural Science Foundation of Heilongjiang Province for Key projects, China

Postdoctoral Scientific Research Developmental Fund of Heilongjiang Province, China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3