Software Requirement Risk Prediction Using Enhanced Fuzzy Induction Models

Author:

Mamman Hussaini12ORCID,Balogun Abdullateef Oluwagbemiga1ORCID,Basri Shuib1,Capretz Luiz Fernando34ORCID,Adeyemo Victor Elijah5ORCID,Imam Abdullahi Abubakar6ORCID,Kumar Ganesh1ORCID

Affiliation:

1. Department of Computer and Information Sciences, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia

2. Department of Management and Information Technology, Abubakar Tafawa Balewa University, Bauchi 740272, Nigeria

3. Department of Electrical and Computer Engineering, Western University, London, ON N6A 5B9, Canada

4. Division of Science, Yale-NUS College, Singapore 138533, Singapore

5. School of Built Environment, Engineering, and Computing, Leeds Beckett University, Headingley Campus, Leeds LS6 3QS, UK

6. School of Digital Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei

Abstract

The development of most modern software systems is accompanied by a significant level of uncertainty, which can be attributed to the unanticipated activities that may occur throughout the software development process. As these modern software systems become more complex and drawn out, escalating software project failure rates have become a critical concern. These unforeseeable uncertainties are known as software risks, and they emerge from many risk factors inherent to the numerous activities comprising the software development lifecycle (SDLC). Consequently, these software risks have resulted in massive revenue losses for software organizations. Hence, it is imperative to address these software risks, to curb future software system failures. The subjective risk assessment (SRM) method is regarded as a viable solution to software risk problems. However, it is inherently reliant on humans and, therefore, in certain situations, imprecise, due to its dependence on an expert’s knowledge and experience. In addition, the SRM does not allow repeatability, as expertise is not easily exchanged across the different units working on a software project. Developing intelligent modelling methods that may offer more unbiased, reproducible, and explainable decision-making assistance in risk management is crucial. Hence, this research proposes enhanced fuzzy induction models for software requirement risk prediction. Specifically, the fuzzy unordered rule induction algorithm (FURIA), and its enhanced variants based on nested subset selection dichotomies, are developed for software requirement risk prediction. The suggested fuzzy induction models are based on the use of effective rule-stretching methods for the prediction process. Additionally, the proposed FURIA method is enhanced through the introduction of nested subset selection dichotomy concepts into its prediction process. The prediction performances of the proposed models are evaluated using a benchmark dataset, and are then compared with existing machine learning (ML)-based and rule-based software risk prediction models. From the experimental results, it was observed that the FURIA performed comparably, in most cases, to the rule-based and ML-based models. However, the FURIA nested dichotomy variants were superior in performance to the conventional FURIA method, and rule-based and ML-based methods, with the least accuracy, area under the curve (AUC), and Mathew’s correlation coefficient (MCC), with values of approximately 98%.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3