Bandwidth Density Analysis of Coded Free-Space Optical Interconnects

Author:

Aldiabat Hasan A.1ORCID,Al-Ababneh Nedal K.2ORCID,Alqudah Asma A.1

Affiliation:

1. Department of Telecommunications Engineering, Yarmouk University, Irbid 21163, Jordan

2. Department of Electrical Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan

Abstract

The performance of free-space optical interconnects (FSOIs) system is significantly influenced by noise, similar to any wireless communication system. This noise has a notable impact on both the bandwidth density and data rate of FSOIs system. To address these challenges, this study proposes the utilization of vertical-cavity-surface-emitting laser (VCSEL) arrays on the transmitter side and photodetector arrays on the receiver side for FSOIs. The study investigates the bandwidth density of the system with and without coding while maintaining a specific bit error rate. An analysis is conducted in the presence of higher-order modes in the laser beams of the FSOIs system and a fundamental Gaussian operating mode. The presence of the higher-order modes leads to degradation in the performance of the FSOIs system in terms of bandwidth density. In addition, we examine the impact of the signal-to-noise ratio (SNR) on the system’s bandwidth density for each considered operating mode. The provided simulation results clearly demonstrate that coding significantly enhances the bandwidth density of the systems, with the extent of improvement being closely tied to the employed code rate and codeword length.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3