Abstract
To minimize wafer yield losses by misprocessing during semiconductor manufacturing, faster and more accurate fault detection during the plasma process are desired to increase production yields. Process faults can be caused by abnormal equipment conditions, and the performance drifts of the parts or components of complicated semiconductor fabrication equipment are some of the most unnoticed factors that eventually change the plasma conditions. In this work, we propose improved stability and accuracy of process fault detection using optical emission spectroscopy (OES) data. Under a controlled experimental setup of arbitrarily induced fault scenarios, the extended isolation forest (EIF) approach was used to detect anomalies in OES data compared with the conventional isolation forest method in terms of accuracy and speed. We also used the OES data to generate features related to electron temperature and found that using the electron temperature features together with equipment status variable identification data (SVID) and OES data improved the prediction accuracy of process/equipment fault detection by a maximum of 0.84%.
Funder
Korea Institute for Advancement of Technology
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献