Actively MEMS-Based Tunable Metamaterials for Advanced and Emerging Applications

Author:

Xu Rui-Jia,Lin Yu-ShengORCID

Abstract

In recent years, tunable metamaterials have attracted intensive research interest due to their outstanding characteristics, which are dependent on the geometrical dimensions rather than the material composition of the nanostructure. Among tuning approaches, micro-electro-mechanical systems (MEMS) is a well-known technology that mechanically reconfigures the metamaterial unit cells. In this study, the development of MEMS-based metamaterial is reviewed and analyzed based on several types of actuators, including electrothermal, electrostatic, electromagnetic, and stretching actuation mechanisms. The moveable displacement and driving power are the key factors in evaluating the performance of actuators. Therefore, a comparison of actuating methods is offered as a basic guideline for selecting micro-actuators integrated with metamaterial. Additionally, by exploiting electro-mechanical inputs, MEMS-based metamaterials make possible the manipulation of incident electromagnetic waves, including amplitude, frequency, phase, and the polarization state, which enables many implementations of potential applications in optics. In particular, two typical applications of MEMS-based tunable metamaterials are reviewed, i.e., logic operation and sensing. These integrations of MEMS with metamaterial provide a novel route for the enhancement of conventional optical devices and exhibit great potentials in innovative applications, such as intelligent optical networks, invisibility cloaks, photonic signal processing, and so on.

Funder

Natural Science Foundation of Basic and Applied Foundation of Guangdong Province

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3