Global Optimization in Robust Fractional Control of Uncertain Fractional Order Systems: A Thermal Application Using the STM32 Microcontroller

Author:

Rhouma AymenORCID,Hafsi Sami,Bouani Faouzi

Abstract

In this paper, we suggest an improvement to our previously undertaken approach. Briefly, this approach consisted of applying the robust fractional predictive control (RFPC) for a class of constrained fractional systems implementing the min–max optimization technique. The RFPC controller requires resolution of a non-convex min–max optimization problem. The resolution of this problem, however, can only conduce to local solutions. The reason is simple: the objective function to be optimized is non-convex due to the presence of uncertainties. In the present work, we propose a global optimization-based RFPC controller for an uncertain fractional order system. A determinist global optimization method, namely, generalized geometric programming (GGP), is proposed to solve this problem for the uncertain fractional order system. The GGP method consists of converting a non-convex problem into a convex one via the application of variable changes. The technique of the convexification of this method is applied in line with the objective function to be optimized. Consequently, we obtained a new convex criterion and a convex problem. From an experimental point of view, we applied the proposed RFPC to a real thermal system using an STM32 microcontroller in order to control our thermal system.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fuzzy Fractional PI Controller for Uncertain Fractional System;2023 IEEE Third International Conference on Signal, Control and Communication (SCC);2023-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3