Abstract
The accurate estimation of the state of charge (SOC) and state of health (SOH) is of great significance to energy management and safety in electric vehicles. To achieve a good trade-off between real-time capability and estimation accuracy, a collaborative estimation algorithm for SOC and SOH is presented based on the Thevenin equivalent circuit model, which combines the recursive least squares method with a forgetting factor and the extended Kalman filter. First, the parameter identification accuracy is studied under a dynamic stress test (DST) and the federal urban driving schedule (FUDS) test at different ambient temperatures (0 °C, 25 °C, and 45 °C). Secondly, the FUDS test is used to verify the SOC estimation accuracy. Thirdly, two batteries with different aging degrees are used to validate the proposed SOH estimation algorithm. Subsequently, the accuracy of the SOC estimation algorithm is studied, considering the influence of updating the SOH. The proposed SOC estimation algorithm can achieve good performance at different ambient temperatures (0 °C, 25 °C, and 45 °C), with a maximum error of less than 2.3%. The maximum error for the SOH is less than 4.3% for two aged batteries at 25 °C, and it can be reduced to 1.4% after optimization. Furthermore, calibrating the capacity as the SOH changes can effectively improve the SOC estimation accuracy over the whole battery life.
Funder
National Natural Science Foundation of China
Hubei Province Technology Innovation Major Project
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献