Convolutional Neural Networks Used to Date Photographs

Author:

Román-Gallego Jesús-ÁngelORCID,Pérez-Delgado María-LuisaORCID,San Gregorio Sergio Vicente

Abstract

Nowadays, the information provided by digital photographs is very complete and very relevant in different professional fields, such as scientific or forensic photography. Taking this into account, it is possible to determine the date when they were taken, as well as the type of device that they were taken with, and thus be able to locate the photograph in a specific context. This is not the case with analog photographs, which lack any information regarding the date they were taken. Extracting this information is a complicated task, so classifying each photograph according to the date it was taken is a laborious task for a human expert. Artificial intelligence techniques make it possible to determine the characteristics and classify the images automatically. Within the field of artificial intelligence, convolutional neural networks are one of the most widely used methods today. This article describes the application of convolutional neural networks to automatically classify photographs according to the year they were taken. To do this, only the photograph is used, without any additional information. The proposed method divides each photograph into several segments that are presented to the network so that it can estimate a year for each segment. Once all the segments of a photograph have been processed, a general year for the photograph is calculated from the values generated by the network for each of its segments. In this study, images taken between 1960 and 1999 were analyzed and classified using different architectures of a convolutional neural network. The computational results obtained indicate that 44% of the images were classified with an error of less than 5 years, 20.25% with a marginal error between 5 and 10 years, and 35.75% with a higher marginal error of more than 10 years. Due to the complexity of the problem, the results obtained are considered good since 64.25% of the photographs were classified with an error of less than 10 years. Another important result of the study carried out is that it was found that the color is a very important characteristic when classifying photographs by date. The results obtained show that the approach given in this study is an important starting point for this type of task and that it allows placing a photograph in a specific temporal context, thus facilitating the work of experts dedicated to scientific and forensic photography.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference53 articles.

1. Exchangeable Image File Format for Digital Still Cameras: EXIF Version 2.32,2019

2. Importance of still photography at scene of crime: A forensic vs. judicial perspective;Rohatgi;J. Harmon. Res. Appl. Sci.,2014

3. Artificial Vision;Gabel,2017

4. Interpretable Machine Learning;Molnar,2020

5. Applications of Artificial Intelligence in Transport: An Overview

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3