Abstract
In the electrical power system, the coordination of directional overcurrent protection relays (DOPR) plays a preeminent role in protecting the electrical power system with the help of primary and back up protection to keep the system vigorous and to avoid unnecessary interruption. The coordination between these relays should be pursued at optimal value to minimize the total operating time of all main relays. The coordination of directional overcurrent relay is a highly constrained optimization problem. The DOPR problem has been solved by using a hybridized version of particle swarm optimization (HPSO). The hybridization is achieved by introducing simulated annealing (SA) in original PSO to avoid being trapped in local optima and successfully searching for a global optimum solution. The HPSO has been successfully applied to five case studies. Furthermore, the obtained results outperform the other traditional and state of the art techniques in terms of minimizing the total operating of DOPR and convergence characteristics, and require less computational time to achieve the global optimum solution.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献