AMROFloor: An Efficient Aging Mitigation and Resource Optimization Floorplanner for Virtual Coarse-Grained Runtime Reconfigurable FPGAs

Author:

Li ZeyuORCID,Huang ZhaoORCID,Wang Quan,Wang Junjie

Abstract

With the rapid reduction of CMOS process size, the FPGAs with high-silicon accumulation technology are becoming more sensitive to aging effects. This reduces the reliability and service life of the device. The offline aging-aware layout planning based on balance stress is an effective solution. However, the existing methods need to take a long time to solve the floorplanner, and the corresponding layout solutions occupy many on-chip resources. To this end, we proposed an efficient Aging Mitigation and Resource Optimization Floorplanner (AMROFloor) for FPGAs. First, the layout solution is implemented on the Virtual Coarse-Grained Runtime Reconfigurable Architecture, which contributes to avoiding rule constraints for placement and routing. Second, the Maximize Reconfigurable Regions Algorithm (MRRA) is proposed to quickly determine the RRs’ number and size to save the solving time and ensure an effective solution. Furthermore, the Resource Combination Algorithm (RCA) is proposed to optimize the on-chip resources, reducing the on-Chip Resource Utilization (CRU) while achieving the same aging relief effect. Experiments were simulated and implemented on Xilinx FPGA. The results demonstrate that the AMROFloor method designed in this paper can extend the Mean Time to Failure (MTTF) by 13.8% and optimize the resource overhead by 19.2% on average compared to the existing aging-aware layout solutions.

Funder

Group Intelligence Behavior Analysis-based Cultural Material Identification and Digital Product Development & Reuse

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference31 articles.

1. A Radiation-Tolerant, Multigigabit Serial Link Based on FPGAs

2. A Digital-Enhanced Chip-Scale Photoacoustic Sensor System for Blood Core Temperature Monitoring and In Vivo Imaging

3. Effects of three factors under BTI on the soft error rate of integrated circuits;Zhen;J. Comput. Res. Dev.,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3