Trust Hardware Based Secured Privacy Preserving Computation System for Three-Dimensional Data

Author:

Yuan Munan,Li Xiaofeng,Li Xiru,Tan Haibo,Xu Jinlin

Abstract

Three-dimensional (3D) data are easily collected in an unconscious way and are sensitive to lead biological characteristics exposure. Privacy and ownership have become important disputed issues for the 3D data application field. In this paper, we design a privacy-preserving computation system (SPPCS) for sensitive data protection, based on distributed storage, trusted execution environment (TEE) and blockchain technology. The SPPCS separates a storage and analysis calculation from consensus to build a hierarchical computation architecture. Based on a similarity computation of graph structures, the SPPCS finds data requirement matching lists to avoid invalid transactions. With TEE technology, the SPPCS implements a dual hybrid isolation model to restrict access to raw data and obscure the connections among transaction parties. To validate confidential performance, we implement a prototype of SPPCS with Ethereum and Intel Software Guard Extensions (SGX). The evaluation results derived from test datasets show that (1) the enhanced security and increased time consumption (490 ms in this paper) of multiple SGX nodes need to be balanced; (2) for a single SGX node to enhance data security and preserve privacy, an increased time consumption of about 260 ms is acceptable; (3) the transaction relationship cannot be inferred from records on-chain. The proposed SPPCS implements data privacy and security protection with high performance.

Funder

National Natural Science Foundation of China

National Natural Science Foundation of Anhui

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3