Pneumonia Detection from Chest X-ray Images Based on Convolutional Neural Network

Author:

Zhang Dejun,Ren Fuquan,Li Yushuang,Na Lei,Ma Yue

Abstract

Pneumonia has caused significant deaths worldwide, and it is a challenging task to detect many lung diseases such as like atelectasis, cardiomegaly, lung cancer, etc., often due to limited professional radiologists in hospital settings. In this paper, we develop a straightforward VGG-based model architecture with fewer layers. In addition, to tackle the inadequate contrast of chest X-ray images, which brings about ambiguous diagnosis, the Dynamic Histogram Enhancement technique is used to pre-process the images. The parameters of our model are reduced by 97.51% compared to VGG-16, 85.86% compared to Res-50, 83.94% compared to Xception, 51.92% compared to DenseNet121, but increased MobileNet by 4%. However, the proposed model’s performance (accuracy: 96.068%, AUC: 0.99107 with a 95% confidence interval of [0.984, 0.996], precision: 94.408%, recall: 90.823%, F1 score: 92.851%) is superior to the models mentioned above (VGG-16: accuracy, 94.359%, AUC: 0.98928; Res-50: accuracy, 92.821%, AUC, 0.98780; Xception: accuracy, 96.068%, AUC, 0.99623; DenseNet121: accuracy, 87.350%, AUC, 0.99347; MobileNet: accuracy, 95.473%, AUC, 0.99531). The original Pneumonia Classification Dataset in Kaggle is split into three sub-sets, training, validation and test sets randomly at ratios of 70%, 10% and 20%. The model’s performance in pneumonia detection shows that the proposed VGG-based model could effectively classify normal and abnormal X-rays in practice, hence reducing the burden of radiologists.

Funder

Natural Science Foundation of China

Natural Science Foundation of Hebei Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference36 articles.

1. UNICEFhttps://data.unicef.org/topic/child-health/pneumonia/

2. Community-acquired pneumonia

3. Pneumoniahttps://www.medicinejournal.co.uk/article/S1357-3039(20)30049-9/fulltext

4. Overview of Machine Learning: Part 2

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3