Author:
Zhang Dejun,Ren Fuquan,Li Yushuang,Na Lei,Ma Yue
Abstract
Pneumonia has caused significant deaths worldwide, and it is a challenging task to detect many lung diseases such as like atelectasis, cardiomegaly, lung cancer, etc., often due to limited professional radiologists in hospital settings. In this paper, we develop a straightforward VGG-based model architecture with fewer layers. In addition, to tackle the inadequate contrast of chest X-ray images, which brings about ambiguous diagnosis, the Dynamic Histogram Enhancement technique is used to pre-process the images. The parameters of our model are reduced by 97.51% compared to VGG-16, 85.86% compared to Res-50, 83.94% compared to Xception, 51.92% compared to DenseNet121, but increased MobileNet by 4%. However, the proposed model’s performance (accuracy: 96.068%, AUC: 0.99107 with a 95% confidence interval of [0.984, 0.996], precision: 94.408%, recall: 90.823%, F1 score: 92.851%) is superior to the models mentioned above (VGG-16: accuracy, 94.359%, AUC: 0.98928; Res-50: accuracy, 92.821%, AUC, 0.98780; Xception: accuracy, 96.068%, AUC, 0.99623; DenseNet121: accuracy, 87.350%, AUC, 0.99347; MobileNet: accuracy, 95.473%, AUC, 0.99531). The original Pneumonia Classification Dataset in Kaggle is split into three sub-sets, training, validation and test sets randomly at ratios of 70%, 10% and 20%. The model’s performance in pneumonia detection shows that the proposed VGG-based model could effectively classify normal and abnormal X-rays in practice, hence reducing the burden of radiologists.
Funder
Natural Science Foundation of China
Natural Science Foundation of Hebei Province
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Reference36 articles.
1. UNICEFhttps://data.unicef.org/topic/child-health/pneumonia/
2. Community-acquired pneumonia
3. Pneumoniahttps://www.medicinejournal.co.uk/article/S1357-3039(20)30049-9/fulltext
4. Overview of Machine Learning: Part 2
Cited by
47 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献