Abstract
It is necessary to reduce the crosstalk noise in high-speed signaling channels. In the channel routing area, the tabbed routing pattern is used to mitigate far-end crosstalk (FEXT), and the electrical length is controlled with a time domain reflectometer (TDR) and time domain transmission (TDT). However, unlike traditional channels having uniform width and space, the width and space of tabbed routing changes by segment, and the capacitance and inductance values of tabbed routing also change. In this paper, we propose a tabbed routing equivalent circuit modeling method using the segmentation approach. The proposed model was verified using 3D EM simulation and measurement results in the frequency domain. Based on the calculated inductance and capacitance parameters, we analyzed the insertion loss, FEXT, and self-impedance in the frequency domain, and TDT and FEXT in the time domain, by comparing the values of these metrics with and without tabbed routing. Using the proposed tabbed routing model, we analyzed tabbed routing with variations of design parameters based on self- and mutual-capacitance and inductance.
Funder
National R&D Program through the National Research Foundation of Korea (NRF) funded by Ministry of Science and ICT
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献