A Compressed Sensing Recovery Algorithm Based on Support Set Selection

Author:

Liang Wandi,Wang Zixiong,Lu Guangyu,Jiang Yang

Abstract

The theory of compressed sensing (CS) has shown tremendous potential in many fields, especially in the signal processing area, due to its utility in recovering unknown signals with far lower sampling rates than the Nyquist frequency. In this paper, we present a novel, optimized recovery algorithm named supp-BPDN. The proposed algorithm executes a step of selecting and recording the support set of original signals before using the traditional recovery algorithm mostly used in signal processing called basis pursuit denoising (BPDN). We proved mathematically that even in a noise-affected CS system, the probability of selecting the support set of signals still approaches 1, which means supp-BPDN can maintain good performance in systems in which noise exists. Recovery results are demonstrated to verify the effectiveness and superiority of supp-BPDN. Besides, we set up a photonic-enabled CS system realizing the reconstruction of a two-tone signal with a peak frequency of 350 MHz through a 200 MHz analog-to-digital converter (ADC) and a signal with a peak frequency of 1 GHz by a 500 MHz ADC. Similarly, supp-BPDN showed better reconstruction results than BPDN.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference40 articles.

1. Robust Uncertainty Principles: Exact Signal Reconstruction From Highly Incomplete Frequency Information;Emmanuel;IEEE Trans. Inf. Theory,2006

2. Compressed Sensing;David;IEEE Trans. Inf. Theory,2006

3. Sub-Nyquist Radar Systems: Temporal, Spectral, and Spatial Compression

4. Duarte; Mark A. Davenport; Dharmpal Takhar. Single-Pixel Imaging via Compressive Sampling;Marco;IEEE Signal Process. Mag.,2008

5. Sparse MRI: The application of compressed sensing for rapid MR imaging

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3