Abstract
Pedestrian detection for complex scenes suffers from pedestrian occlusion issues, such as occlusions between pedestrians. As well-known, compared with the variability of the human body, the shape of a human head and their shoulders changes minimally and has high stability. Therefore, head detection is an important research area in the field of pedestrian detection. The translational invariance of neural network enables us to design a deep convolutional neural network, which means that, even if the appearance and location of the target changes, it can still be recognized effectively. However, the problems of scale invariance and high miss detection rates for small targets still exist. In this paper, a feature extraction network DR-Net based on Darknet-53 is proposed to improve the information transmission rate between convolutional layers and to extract more semantic information. In addition, the MDC (mixed dilated convolution) with different sampling rates of dilated convolution is embedded to improve the detection rate of small targets. We evaluated our method on three publicly available datasets and achieved excellent results. The AP (Average Precision) value on the Brainwash dataset, HollywoodHeads dataset, and SCUT-HEAD dataset reached 92.1%, 84.8%, and 90% respectively.
Funder
Research Foundation for Advanced Talents of Guizhou University under the grant
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献