Securing Remote Access to Information Systems of Critical Infrastructure Using Two-Factor Authentication

Author:

Bruzgiene RasaORCID,Jurgilas Konstantinas

Abstract

Information systems of critical infrastructure provide services on which the core functions of a state and its economy depend as well as welfare of society. Such systems are becoming an increasingly common target for crimes and attacks in cyberspace, as their vulnerabilities can be exploited for malicious activities seeking financial or political gain. One of the main reasons that threatens the security of these systems is the weak control of remote access, otherwise defined as management of a system’s user identity. Management of user identity depends on user authentication, authorization and the assignment of certain rights in the digital space. This paper provides the proposed two-factor (2FA) digital authentication method for remote access to an information system of a critical infrastructure. Results of testing the method’s usability and resilience to cyber threats have shown that the system, in which the method was implemented, is protected from dangerous HTTP requests and publicly available system’s endpoints are protected from threatening inputs that could cause malicious activities on the critical infrastructure. Additionally, the implementation of the authentication API application ensures the rapidity of the method for less than 500 ms for 100 users working in parallel with the system at the same time.

Funder

Nordplus - Advances in Information, Automation and Electrical Engineering (ENERGYCOM).

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference29 articles.

1. Cyber Attacks Targeting Critical Infrastructure https://etech.iec.ch/issue/2019-02/cyber-attacks-targeting-critical-infrastructure

2. Threat landscape for Industrial Automation Systems (Report H1 2020) https://ics-cert.kaspersky.com/reports/2020/09/24/threat-landscape-for-industrial-automation-systems-h1-2020/

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3