Cybersecurity in Automotive: An Intrusion Detection System in Connected Vehicles

Author:

Pascale FrancescoORCID,Adinolfi Ennio AndreaORCID,Coppola Simone,Santonicola Emanuele

Abstract

Today’s modern vehicles are connected to a network and are considered smart objects of IoT, thanks to the capability to send and receive data from the network. One of the greatest challenges in the automotive sector is to make the vehicle secure and reliable. In fact, there are more connected instruments on a vehicle, such as the infotainment system and/or data interchange systems. Indeed, with the advent of new paradigms, such as Smart City and Smart Road, the vision of Internet of Things has evolved substantially. Today, we talk about the V2X systems in which the vehicle is strongly connected with the rest of the world. In this scenario, the main aim of all connected vehicles vendors is to provide a secure system to guarantee the safety of the drive and persons against a possible cyber-attack. So, in this paper, an embedded Intrusion Detection System (IDS) for the automotive sector is introduced. It works by adopting a two-step algorithm that provides detection of a possible cyber-attack. In the first step, the methodology provides a filter of all the messages on the Controller Area Network (CAN-Bus) thanks to the use of a spatial and temporal analysis; if a set of messages are possibly malicious, these are analyzed by a Bayesian network, which gives the probability that a given event can be classified as an attack. To evaluate the efficiency and effectiveness of our method, an experimental campaign was conducted to evaluate them, according to the classic evaluation parameters for a test’s accuracy. These results were compared with a common data set on cyber-attacks present in the literature. The first experimental results, obtained in a test scenario, seem to be interesting. The results show that our method has good correspondence in the presence of the most common cyber-attacks (DDoS, Fuzzy, Impersonating), obtaining a good score relative to the classic evaluation parameters for a test’s accuracy. These results have decreased performance when we test the system on a Free State Attack.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference66 articles.

1. Internet of Things: A General Overview between Architectures, Protocols and Applications

2. Internet of Things (IoT) Cybersecurity Research: A Review of Current Research Topics

3. C-ITS communication: An insight on the current research activities in the European Union;Botte;Int. J. Transp. Syst.,2018

4. Principles of Information Security;Whitman,2011

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3