Abstract
In recent years, with the development of the communication industry, the need to use Ethernet switches to transmit big data has become more urgent, and its protocol standards are iterating towards higher return loss, wider bandwidth, lower impedance fluctuations and insertion loss. Based on the research of high-speed backplane with a single channel 25 Gbps transmission rate, a novel double grounded planar strip coplanar waveguide design is presented, which significantly improved return loss to 20 dB and reduced insertion loss, which meet the loss standard of 100GBASE-KR4. The resonant cavity model of transmission line reference plane is improved by introducing vias and the parameters of vias in the reference plane are studied to reduce the impact of resonance, which improved the transmission −1 dB bandwidth to 60 GHz. Based on equivalent circuit analysis of differential vias’ joint reverse pad, the parameters related to the differential vias are studied, the impedance fluctuation is reduced to 100 ± 3 Ω, which is 70% better than the impedance fluctuation standard (100 ± 10 Ω) of 100GBASE-KR4. After optimizing the mathematical model of strip coplanar waveguide, reference plane and differential vias, we built a simulation model of the backplane passive link which met the 100GBASE-KR4 backplane Ethernet specification. In the actual test, it was found that the optimized model can improve the link performance.
Funder
National Natural Science Foundation of China
Beijing Municipal Commission of Education
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A Novel Guided Wave Structure: Equivalent GCPW;2022 Asia-Pacific Microwave Conference (APMC);2022-11-29