Abstract
The distribution of disk output voltage is a key factor for the design of an insulated core transformer (ICT) high-voltage power supply. The development of an ICT involves the design and optimization of many parameters, which greatly affect the uniformity of disk output voltage. A new ICT structure with dummy primary windings can compensate for the disk output voltage, which aims to improve uniformity. In this work, an optimization method based on a particle swarm optimization (PSO) algorithm was used to optimize the design parameters of an ICT with dummy primary windings. It achieved an optimal uniformity of disk output voltage and load regulation. The design parameters, including the number of secondary winding turns and the compensation capacitance, were optimized based on the finite-element method (FEM) and Simulink circuit simulation. The results show that the maximum non-uniformity of the disk output voltage is reduced from 11.1% to 4.4% from no-load to a full load for a 200 kV/20 mA HUST-ICT prototype. Moreover, the load regulation is greatly reduced from 14.3% to 9.6%. The method improves the stability and reliability of the ICT high voltage power supply and greatly reduces the design time.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献