A Novel Emotion-Aware Hybrid Music Recommendation Method Using Deep Neural Network

Author:

Wang ShuORCID,Xu ChonghuanORCID,Ding Austin Shijun,Tang Zhongyun

Abstract

Emotion-aware music recommendations has gained increasing attention in recent years, as music comes with the ability to regulate human emotions. Exploiting emotional information has the potential to improve recommendation performances. However, conventional studies identified emotion as discrete representations, and could not predict users’ emotional states at time points when no user activity data exists, let alone the awareness of the influences posed by social events. In this study, we proposed an emotion-aware music recommendation method using deep neural networks (emoMR). We modeled a representation of music emotion using low-level audio features and music metadata, model the users’ emotion states using an artificial emotion generation model with endogenous factors exogenous factors capable of expressing the influences posed by events on emotions. The two models were trained using a designed deep neural network architecture (emoDNN) to predict the music emotions for the music and the music emotion preferences for the users in a continuous form. Based on the models, we proposed a hybrid approach of combining content-based and collaborative filtering for generating emotion-aware music recommendations. Experiment results show that emoMR performs better in the metrics of Precision, Recall, F1, and HitRate than the other baseline algorithms. We also tested the performance of emoMR on two major events (the death of Yuan Longping and the Coronavirus Disease 2019 (COVID-19) cases in Zhejiang). Results show that emoMR takes advantage of event information and outperforms other baseline algorithms.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3