A New Cost-Efficient Design of a Reversible Gate Based on a Nano-Scale Quantum-Dot Cellular Automata Technology

Author:

Seyedi SaeidORCID,Otsuki Akira,Navimipour Nima JafariORCID

Abstract

Quantum-dot cellular automata (QCA) nanotechnology is a practical suggestion for replacing present silicon-based technologies. It provides many benefits, such as low power usage, high velocity, and an extreme density of logic functions on a chip. In contrast, designing circuits with no waste of information (reversible circuits) may further reduce energy losses. The Feynman gate has been recognized as one of the most famous QCA-based gates for this purpose. Since reversible gates are significant, this paper develops a new optimized reversible double Feynman gate that uses efficient arithmetic elements as its key structural blocks. Additionally, we used several modeling principles to make it consistent and more robust against noise. Moreover, we examined the suggested model and compared it to the previous models regarding the complexity, clocking, number of cells, and latency. Furthermore, we applied QCADesigner to monitor the outline and performance of the proposed gate. The results show an acceptable improvement via the designed double Feynman gate in comparison to the existing designs. Finally, the temperature and cost analysis indicated the efficiency of the proposed nan-scale gate.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3