Author:
Pan Chenyun,Tao Shengyu,Fan Hongtao,Shu Mengyao,Zhang Yong,Sun Yaojie
Abstract
Optimal operation of energy storage systems plays an important role in enhancing their lifetime and efficiency. This paper combines the concepts of the cyber–physical system (CPS) and multi-objective optimization into the control structure of the hybrid energy storage system (HESS). Owing to the time-varying characteristics of HESS, combining real-time data with physical models via CPS can significantly promote the performance of HESS. The multi-objective optimization model designed in this paper can improve the utilization of supercapacitors, reduce energy consumption, and prevent the state of charge (SOC) of HESS from exceeding the limitation. The new control scheme takes the characteristics of the components of HESS into account and is beneficial in reducing battery short-term power cycling and high discharge currents. The rain-flow counting algorithm is applied for battery life prediction to quantify the benefits of the HESS under the control scheme proposed. A much better power-sharing relationship between the supercapacitor and the lithium–ion battery (LiB) can be observed from the SIMULINK results and the case study with our new control scheme. Moreover, compared to the traditional low-pass filter control method, the battery lifetime is quantifiably increased from 3.51 years to 10.20 years while the energy efficiency is improved by 1.56%.
Funder
National Key Research and Development Program of China
Key Scientific Research Program of Shanghai
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献