Time Series Segmentation Using Neural Networks with Cross-Domain Transfer Learning

Author:

Matias Pedro,Folgado DuarteORCID,Gamboa HugoORCID,Carreiro AndréORCID

Abstract

Searching for characteristic patterns in time series is a topic addressed for decades by the research community. Conventional subsequence matching techniques usually rely on the definition of a target template pattern and a searching method for detecting similar patterns. However, the intrinsic variability of time series introduces changes in patterns, either morphologically and temporally, making such techniques not as accurate as desired. Intending to improve segmentation performances, in this paper, we proposed a Mask-based Neural Network (NN) which is capable of extracting desired patterns of interest from long time series, without using any predefined template. The proposed NN has been validated, alongside a subsequence matching algorithm, in two datasets: clinical (electrocardiogram) and human activity (inertial sensors). Moreover, the reduced dimension of the data in the latter dataset led to the application of transfer learning and data augmentation techniques to reach model convergence. The results have shown the proposed model achieved better segmentation performances than the baseline one, in both domains, reaching average Precision and Recall scores of 99.0% and 97.5% (clinical domain), along with 77.0% and 71.4% (human activity domain), introducing Neural Networks and Transfer Learning as promising alternatives for pattern searching in time series.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A New Approach to Animal Behavior Classification using Recurrent Neural Networks;2024 4th International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET);2024-05-16

2. An Automated Method for Data Fusion and Labelling Ofprocess Data;2024

3. The Reliability and Accuracy of a Fall Risk Assessment Procedure Using Mobile Smartphone Sensors Compared with a Physiological Profile Assessment;Sensors;2023-07-20

4. Semantic Segmentation and Recognition of Temporal Patterns in Urban SAR Sequences;IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium;2023-07-16

5. A 12-Lead ECG Delineation Algorithm based on a Quantized CNN-BiLSTM Auto-encoder with 1-12 Mapping;2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS);2023-06-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3