IoT Device for Sitting Posture Classification Using Artificial Neural Networks

Author:

Luna-Perejón FranciscoORCID,Montes-Sánchez Juan ManuelORCID,Durán-López LourdesORCID,Vazquez-Baeza Alberto,Beasley-Bohórquez Isabel,Sevillano-Ramos José L.ORCID

Abstract

Nowadays, the percentage of time that the population spends sitting has increased substantially due to the use of computers as the main tool for work or leisure and the increase in jobs with a high office workload. As a consequence, it is common to suffer musculoskeletal pain, mainly in the back, which can lead to both temporary and chronic damage. This pain is related to holding a posture during a prolonged period of sitting, usually in front of a computer. This work presents a IoT posture monitoring system while sitting. The system consists of a device equipped with Force Sensitive Resistors (FSR) that, placed on a chair seat, detects the points where the user exerts pressure when sitting. The system is complemented with a Machine Learning model based on Artificial Neural Networks, which was trained to recognize the neutral correct posture as well as the six most frequent postures that involve risk of damage to the locomotor system. In this study, data was collected from 12 participants for each of the seven positions considered, using the developed sensing device. Several neural network models were trained and evaluated in order to improve the classification effectiveness. Hold-Out technique was used to guide the training and evaluation process. The results achieved a mean accuracy of 81% by means of a model consisting of two hidden layers of 128 neurons each. These results demonstrate that is feasible to distinguish different sitting postures using few sensors allocated in the surface of a seat, which implies lower costs and less complexity of the system.

Funder

Telefónica Chair ‘Intelligence in Networks’

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3