Abstract
The discriminative object tracking system for unmanned aerial vehicles (UAVs) is widely used in numerous applications. While an ample amount of research has been carried out in this domain, implementing a low computational cost algorithm on a UAV onboard embedded system is still challenging. To address this issue, we propose a low computational complexity discriminative object tracking system for UAVs approach using the patch color group feature (PCGF) framework in this work. The tracking object is separated into several non-overlapping local image patches then the features are extracted into the PCGFs, which consist of the Gaussian mixture model (GMM). The object location is calculated by the similar PCGFs comparison from the previous frame and current frame. The background PCGFs of the object are removed by four directions feature scanning and dynamic threshold comparison, which improve the performance accuracy. In the terms of speed execution, the proposed algorithm accomplished 32.5 frames per second (FPS) on the x64 CPU platform without a GPU accelerator and 17 FPS in Raspberry Pi 4. Therefore, this work could be considered as a good solution for achieving a low computational complexity PCGF algorithm on a UAV onboard embedded system to improve flight times.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献