Abstract
Fog computing is meant to deal with the problems which cloud computing cannot solve alone. As the fog is closer to a user, it can improve some very important QoS characteristics, such as a latency and availability. One of the challenges in the fog architecture is heterogeneous constrained devices and the dynamic nature of the end devices, which requires a dynamic service orchestration to provide an efficient service placement inside the fog nodes. An optimization method is needed to ensure the required level of QoS while requiring minimal resources from fog and end devices, thus ensuring the longest lifecycle of the whole IoT system. A two-stage multi-objective optimization method to find the best placement of services among available fog nodes is presented in this paper. A Pareto set of non-dominated possible service distributions is found using the integer multi-objective particle swarm optimization method. Then, the analytical hierarchy process is used to choose the best service distribution according to the application-specific judgment matrix. An illustrative scenario with experimental results is presented to demonstrate characteristics of the proposed method.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献