Cinematographic Shot Classification with Deep Ensemble Learning

Author:

Vacchetti BartolomeoORCID,Cerquitelli TaniaORCID

Abstract

Cinematographic shot classification assigns a category to each shot either on the basis of the field size or on the movement performed by the camera. In this work, we focus on the camera field of view, which is determined by the portion of the subject and of the environment shown in the field of view of the camera. The automation of this task can help freelancers and studios belonging to the visual creative field in their daily activities. In our study, we took into account eight classes of film shots: long shot, medium shot, full figure, american shot, half figure, half torso, close up and extreme close up. The cinematographic shot classification is a complex task, so we combined state-of-the-art techniques to deal with it. Specifically, we finetuned three separated VGG-16 models and combined their predictions in order to obtain better performances by exploiting the stacking learning technique. Experimental results demonstrate the effectiveness of the proposed approach in performing the classification task with good accuracy. Our method was able to achieve 77% accuracy without relying on data augmentation techniques. We also evaluated our approach in terms of f1 score, precision, and recall and we showed confusion matrices to show that most of our misclassified samples belonged to a neighboring class.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improving AI-assisted video editing: Optimized footage analysis through multi-task learning;Neurocomputing;2024-12

2. Mask-VGG: A Shot Scale Classification Model Based on Mask Generation;2023 International Conference on Culture-Oriented Science and Technology (CoST);2023-10-11

3. Toward Unified and Quantitative Cinematic Shot Attribute Analysis;Electronics;2023-10-08

4. LEMMS: Label Estimation of Multi-feature Movie Segments;2023 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW);2023-10-02

5. A lightweight weak semantic framework for cinematographic shot classification;Scientific Reports;2023-09-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3