Hardware-In-the-Loop Validation of Direct MPPT Based Cuckoo Search Optimization for Partially Shaded Photovoltaic System

Author:

Al-Shammaa Abdullrahman A.ORCID,M. Abdurraqeeb AkramORCID,Noman Abdullah M.ORCID,Alkuhayli AbdulazizORCID,Farh Hassan M. H.ORCID

Abstract

During partial shading conditions (PSCs), the power-voltage curve becomes more complex, having one global maximum power (GMP) and many local peaks. Traditional maximum power point tracking (MPPT) algorithms are unable to track the GMP under PSCs. Therefore, several optimization tactics based on metaheuristics or artificial intelligence have been applied to deal with GMP tracking effectively. This paper details how a direct control cuckoo search optimizer (CSO) is used to track the GMP for a photovoltaic (PV) system. The proposed CSO addresses the limitations of traditional MPPT algorithms to deal with the PSCs and the shortcomings of the particle swarm optimization (PSO) algorithm, such as low tracking efficiency, steady-state fluctuations, and tracking time. The CSO was implemented using MATLAB/Simulink for a PV array operating under PSCs and its tracking performance was compared to that of the PSO-MPPT. Experimental validation of the CSO-MPPT was performed on a boost DC/DC converter using a real-time Hardware-In-the-Loop (HIL) simulator (OPAL-RT OP4510) and dSPACE 1104. The results show that CSO is capable of tracking GMP within 0.99–1.32 s under various shading patterns. Both the simulation and experimental findings revealed that the CSO outperformed the PSO in terms of steady-state fluctuations and tracking time.

Funder

National Plan for Science, Technology, and Innovation, King Abdulaziz City for Science and Technology, Kingdom of Saudi Arabia

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3