A Semi-Unsupervised Segmentation Methodology Based on Texture Recognition for Radiomics: A Preliminary Study on Brain Tumours

Author:

Donelli MassimoORCID,Espa Giuseppe,Feraco PaolaORCID

Abstract

Because of the intrinsic anatomic complexity of the brain structures, brain tumors have a high mortality and disability rate, and an early diagnosis is mandatory to contain damages. The commonly used biopsy is the diagnostic gold standard method, but it is invasive and, due to intratumoral heterogeneity, biopsies may lead to an incorrect result. Moreover, some tumors cannot be resectable if located in critical eloquent areas. On the other hand, medical imaging procedures can evaluate the entire tumor in a non-invasive and reproducible way. Radiomics is an emerging diagnosis technique based on quantitative medical image analyses, which makes use of data provided by non-invasive diagnosis techniques such as X-ray, computer-tomography (CT), magnetic resonance (MR), and proton emission tomography (PET). Radiomics techniques require the comprehensive analysis of huge numbers of medical images to extract a large and useful number of phenotypic features (usually called radiomics biomarkers). The goal is to explore and obtain the associations between features of tumors, diagnosis and patients’ prognoses to choose the best treatments and maximize the patient’s survival rate. Current radiomics techniques are not standardized in term of segmentation, feature extraction, and selection, moreover, the decision on suitable therapies still requires the supervision of an expert doctor. In this paper, we propose a semi-automatic methodology aimed to help the identification and segmentation of malignant tissues by using the combination of binary texture recognition, growing area algorithm, and machine learning techniques. In particular, the proposed method not only helps to better identify pathologic tissues but also permits to analyze in a fast way the huge amount of data, in Dicom format, provided by non-invasive diagnostic techniques. A preliminary experimental assessment has been conducted, considering a real MRI database of brain tumors. The method has been compared with the segmentation software’s tools “slicer 3D”. The obtained results are quite promising and demonstrate the potentialities of the proposed semi-unsupervised segmentation methodology.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3