Abstract
By leveraging deep learning technologies, data-driven-based approaches have reached great success with the rapid increase of data generated for medical applications. However, security and privacy concerns are obstacles for data providers in many sensitive data-driven scenarios, such as rehabilitation and 24 h on-the-go healthcare services. Although many federated learning (FL) approaches have been proposed with DNNs for medical applications, these works still suffer from low usability of data due to data incompleteness, low quality, insufficient quantity, sensitivity, etc. Therefore, we propose a ring-topology-based decentralized federated learning (RDFL) scheme for deep generative models (DGM), where DGM is a promising solution for solving the aforementioned data usability issues. Our RDFL schemes provide communication efficiency and maintain training performance to boost DGMs in target tasks compared with existing FL works. A novel ring FL topology and a map-reduce-based synchronizing method are designed in the proposed RDFL to improve the decentralized FL performance and bandwidth utilization. In addition, an inter-planetary file system (IPFS) is introduced to further improve communication efficiency and FL security. Extensive experiments have been taken to demonstrate the superiority of RDFL with either independent and identically distributed (IID) datasets or non-independent and identically distributed (Non-IID) datasets.
Funder
Ningbo Natural Science Foundation
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Reference39 articles.
1. Influence of the Digital Divide and Socio-Economic Factors on Prevalence of Diabetes;Sai Ambati;Issues Inf. Syst.,2020
2. Querying in Internet of Things with Privacy Preserving: Challenges, Solutions and Opportunities
3. A generic framework for privacy preserving deep learning;Ryffel;arXiv,2018
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献