Efficient Ring-Topology Decentralized Federated Learning with Deep Generative Models for Medical Data in eHealthcare Systems

Author:

Wang ZhaoORCID,Hu Yifan,Yan Shiyang,Wang Zhihao,Hou Ruijie,Wu Chao

Abstract

By leveraging deep learning technologies, data-driven-based approaches have reached great success with the rapid increase of data generated for medical applications. However, security and privacy concerns are obstacles for data providers in many sensitive data-driven scenarios, such as rehabilitation and 24 h on-the-go healthcare services. Although many federated learning (FL) approaches have been proposed with DNNs for medical applications, these works still suffer from low usability of data due to data incompleteness, low quality, insufficient quantity, sensitivity, etc. Therefore, we propose a ring-topology-based decentralized federated learning (RDFL) scheme for deep generative models (DGM), where DGM is a promising solution for solving the aforementioned data usability issues. Our RDFL schemes provide communication efficiency and maintain training performance to boost DGMs in target tasks compared with existing FL works. A novel ring FL topology and a map-reduce-based synchronizing method are designed in the proposed RDFL to improve the decentralized FL performance and bandwidth utilization. In addition, an inter-planetary file system (IPFS) is introduced to further improve communication efficiency and FL security. Extensive experiments have been taken to demonstrate the superiority of RDFL with either independent and identically distributed (IID) datasets or non-independent and identically distributed (Non-IID) datasets.

Funder

Ningbo Natural Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference39 articles.

1. Influence of the Digital Divide and Socio-Economic Factors on Prevalence of Diabetes;Sai Ambati;Issues Inf. Syst.,2020

2. Querying in Internet of Things with Privacy Preserving: Challenges, Solutions and Opportunities

3. A generic framework for privacy preserving deep learning;Ryffel;arXiv,2018

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3