Ternary Neural Networks Based on on/off Memristors: Set-Up and Training

Author:

Morell AntoniORCID,Machado Elvis DíazORCID,Miranda EnriqueORCID,Boquet GuillemORCID,Vicario Jose LopezORCID

Abstract

Neuromorphic systems based on hardware neural networks (HNNs) are expected to be an energy and time-efficient computing architecture for solving complex tasks. In this paper, we consider the implementation of deep neural networks (DNNs) using crossbar arrays of memristors. More specifically, we considered the case where such devices can be configured in just two states: the low-resistance state (LRS) and the high-resistance state (HRS). HNNs suffer from several non-idealities that need to be solved when mapping our software-based models. A clear example in memristor-based neural networks is conductance variability, which is inherent to resistive switching devices, so achieving good performance in an HNN largely depends on the development of reliable weight storage or, alternatively, mitigation techniques against weight uncertainty. In this manuscript, we provide guidelines for a system-level designer where we take into account several issues related to the set-up of the HNN, such as what the appropriate conductance value in the LRS is or the adaptive conversion of current outputs at one stage to input voltages for the next stage. A second contribution is the training of the system, which is performed via offline learning, and considering the hardware imperfections, which in this case are conductance fluctuations. Finally, the resulting inference system is tested in two well-known databases from MNIST, showing that is competitive in terms of classification performance against the software-based counterpart. Additional advice and insights on system tuning and expected performance are given throughout the paper.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3